AIM
To build a within- and between-herd transmission model of *S. Dublin* infection in dairy herds to further evaluate potential surveillance strategies

MODEL

WITHIN-HERD INFECTION DYNAMICS
- Stochastic compartmental model based on the Gillespie algorithm (R package *siminf*)
- Susceptible – Infected – Carrier – Recovered
- Age-specific parameters
- Infection probability depending on the environmental infectious pressure

BETWEEN-HERD INFECTION DYNAMICS
- Animals moved between herds according to the Swedish cattle movement registry data
- Same data to determine ageing events, introductions and exits in each herd

DATA
- All cattle movements recorded in Sweden in Jul 2005 – Dec 2013
- 37,000 cattle herds (8400 dairy)
- 1.6 million cattle (900,000 dairy)
- 10.8 million events
 - birth, purchase, death, sale, slaughter, ageing

INITIALIZATION
- 3 age groups
 - calves: < 6 months
 - young stock: 6 – 30 months
 - adults: > 30 months
- Starting point: 420 (5%) randomly selected infected dairy herds, preferentially located in the high-prevalence region.

RESULTS
- Median within-herd prevalence was 9% for calves, 3.5% for young stock and 2.5% for adults (Fig. 1)
- Within-herd prevalence fluctuated around the year (seasonality) but had the same pattern between years
- Seasonality was modelled as different rate of bacterial decay per season → direct (negative) correlation with environmental infectious pressure
- Between-herd prevalence stabilized to around 1% after few years (Fig. 2)
- Results are censored because the model depends on real movement data → sensitive to starting values

DISCUSSION
- Within-herd infection dynamics are driven by the parameters in the model, while between-herd infection dynamics mainly depend on the data
- The model mimics the spread of *S. Dublin* between Swedish dairy cattle herds → influenced by specific herd sizes and pattern of animal movements
- Animal movements include also the control measures applied during the 6 years for any cattle disease → restricted herds = ban of movements
- The model can be useful for evaluating surveillance strategies specific for the disease situation in Sweden

Motivation
- Around 1% of Swedish dairy herds are infected with *S. Dublin*
- Surveillance and control measures have been in place since 1960s
- Fewer cases were detected over the years → eradication of *S. Dublin* may be possible, but it requires a more sensitive surveillance strategy

Author Information
Arianna Comin, Stefan Widgren, Estelle Ågren, Ann Lindberg
Department of Disease Control and Epidemiology, Swedish National Veterinary Institute (SVA)

Contact Information
Arianna Comin
Department of Disease Control and Epidemiology
Epidemiologist, DVM PhD
NATIONAL VETERINARY INSTITUTE
post. SE-751 89 Uppsala, Sweden
phone. +46 18 30 91 62 fax. +46 18 30 91 62
e-mail. arianna.comin@sva.se web. www.sva.se
