Source attribution of human campylobacteriosis in Sweden -2012

Thomas Rosendal
Zoonoscenter, Statens Veterinärmedicinska Anstalt
Prior findings - Sources of human *Campylobacter* infection

- Poultry 50-80%
- Cattle 15-30%
- **Sheep**, Pigs, Wildlife, Surface water, Other environmental sources <15%

- Interventions to reduce human cases?
- Improvements in external biosecurity
- Freezing of meat

- New Zealand
- England
- The Netherlands
- Finland
- Denmark
Methods - Analysis

- Summaries of findings in each source
- Asymmetric island model (Wilson et al.)
 - Phylogenetic based approach
 - Probabilistic assignment of cases to source
 - Based on between and within group heterogeneity
Results

- Low prevalence sources:
 - Pigs
 - 2 *jejuni* isolates identified (103 *C. coli*)
 - ST-21, ST-1775
 - Dogs
 - 5 *jejuni* isolates identified (53 *C. upsaliensis*)
 - All identified in humans, 4 in other sources
 - Bathing water
 - No campylobacter identified
 - Methodology in question
Results

• Sources with unique MLST types:
 – Wild birds and surface water
 – These two types were the most separate from the rest of the sources
 – Little overlap between them
 • 5 isolates – also common to other sources

• Sources with common types:
 – Sheep, Cattle, Poultry
Sheep

- 63/417 positive
- 59 C. jejuni
- 3 C. coli
- 1 C. lari
Sheep

- 59 isolates
- 17 types
- Only 2 not shared with humans
- 10 uniquely shared with humans
Cattle

• 48 isolates
• 16 types
• 4 unique
• 4 uniquely shared with humans
• Remainder shared with poultry types
276/2475 positive
227 C. jejuni
8 C. coli
1 C. upsaliensis
Broiler chickens

- 68 types
- 39 not shared with humans
- 18 uniquely shared with humans
Imported retail chicken

- 53/77 C. jejuni
- Denmark
- Estonia
- Holland
- Finland
- France

- 9 new poultry types
- Of which 4 were also identified in humans.
Humans

Poultry

Wild birds

Cattle

Sheep

Raw water

Pigs

Dogs

Imported chicken

All isolates
Asymmetric island model

- Assign humans isolates to source groups

Wild birds
Dogs
Sheep
Cattle
Imported chicken
Poultry
Raw water
Human cases
Source probability
Confidence in attribution of cases?
Cross-validation:

• Re-run model many times
• Each iteration:
 • Leave out one source isolate
 • Re-label it ‘human’
 • Run model
• Does the model classify the isolate correctly?
Cross-validation:

- Re-run model many times
- Each iteration:
 - Leave out one source isolate
 - Re-label it ‘human’
 - Run model
 - Does the model classify the isolate correctly?

<table>
<thead>
<tr>
<th></th>
<th>CATTLE</th>
<th>CHICKEN</th>
<th>BIRD</th>
<th>WATER</th>
<th>SHEEP</th>
<th>FOOD</th>
<th>DOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATTLE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHICKEN</td>
<td>5</td>
<td>81</td>
<td>20</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>BIRD</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>WATER</td>
<td>1</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SHEEP</td>
<td>18</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>2</td>
<td>21</td>
<td>41</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>DOG</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Is it valid?
Conclusions

- Poultry and imported poultry meat are important
- Cattle importance is likely underestimated?
 - Cases going to sheep
- **Model overestimates importance of Sheep**
 - Taking cases from cattle and poultry
- Highlights difficulty of attribution of individual human cases
 - Using classification for future research is dangerous
- Need more than isolate information?
- Future work:
 - Cut-off value to classify into unknown category
Questions?