TERLABORATORY STUDY - PCR FOR CONFIRMATION AND/OR IDENTIFICATION OF CAMPYLOBACTER SPP. Sevinc Ferrari EURL-Campylobacter Workshop 28-29 September 2021

BACKGROUND INFORMATION

9.5 Confirmation of Campylobacter

9.5.1 General

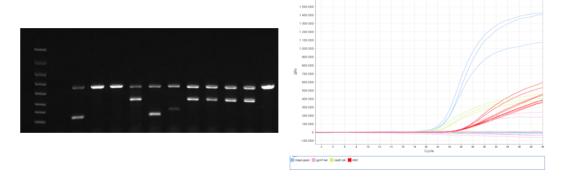
As Campylobacter rapidly loses culturability in air, follow the procedure described in 9.5.2 to 9.5.5 without delay.

For a clear distinction between positive and negative confirmation reactions, it is helpful to verify this with well-characterized positive and negative control strains. Examples of suitable control strains are Campylobacter jejuni WDCM 00005 (positive control)[17] and Escherichia coli WDCM 00013 (negative control).

As an alternative, or in addition, to the confirmation and identification tests described in this document, other tests (PCR tests, serological methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis, etc.) can be used, providing the suitability of the alternative procedure is verified (see ISO 7218).

4.4 Confirmation

The suspect *Campylobacter* colonies are examined for morphology and motility using a microscope and sub-cultured on a non-selective blood agar, and then confirmed by detection of oxidase activity and an aerobic growth test at 25 °C. Optionally, the *Campylobacter* species are identified by specific biochemical tests and/or molecular methods.


Molecular methods as alternative to biochemical tests for confirmation and species identification of *Campylobacter* spp.

Development of amendments to ISO 10272:2017

Three PCR assays were chosen to be included.

- one conventional PCR method
- two qPCR methods

THE PCR METHODS

Confirmation of thermotolerant Campylobacter

PCR 1 - Josefsen et al., 2004 (2010) and Pacholewicz et al., 2019 (qPCR)

-Targets C. jejuni, C. coli and C. lari

Identification of thermotolerant Campylobacter

PCR 2 - Wang et al., 2002 (conventional PCR)

but C. lari primers changed to Chaban 2009 et al., (targets both subspecies).

- Targets 23S rRNA of *Campylobacterales* and species specific targets of *C. jejuni*, *C. coli*, *C. lari* and *C. upsaliensis* (also *C. fetus*)
- **PCR 3** Mayr et al., 2010 (qPCR)
 - Targets C. jejuni, C. coli and C. lari

VALIDATION STUDY

Validation of the PCR methods according to the ISO 16140-6 standard (as far possible)

Microbiology of the food chain - Method validation - Part 6: Protocol for the validation of alternative (proprietary) methods for microbiological confirmation and typing procedures (ISO 16140-6:2019)

A method comparison study against reference method (2020)

An interlaboratory study (ILS) (2021)

SELECTION OF STRAINS

Number of strains to analyse per participant and per method:

Genus level

<u>confirmation method:</u> 16 target strains (jejuni/coli/lari)

8 non-target strains

= 24 strains

PCR 1

Species level

identification methods: 16 C. jejuni, 16 C. coli, 10 C. lari,

2 C. upsaliensis (PCR 2)

8 non-target strains

= 50 strains

PCR 2 PCR 3

Selection of strains

Target strains - positive by ref. and the three PCR methods Non-target strains - negative by ref. and the three PCR methods Growth on mCCD agar and 41.5°C in microaerobic atmosphere

NON-TARGET STRAINS USED IN THE TEST

Species	Source
Campylobacter hyointestinalis	Pig (feaces)
Campylobacter hyointestinalis	Cattle farm (sock sample)
Campylobacter lanienae	Pig (faeces)
Campylobacter helveticus	Cat (faeces)
Escherichia coli	Chicken (caecum)
Acinetobacter baumannii	Chicken (caecum)
Candida rugosa	Chicken (caecum)
Pseudomonas aeruginosa	Type strain (human blood)

PREPARATIONS OF STRAINS

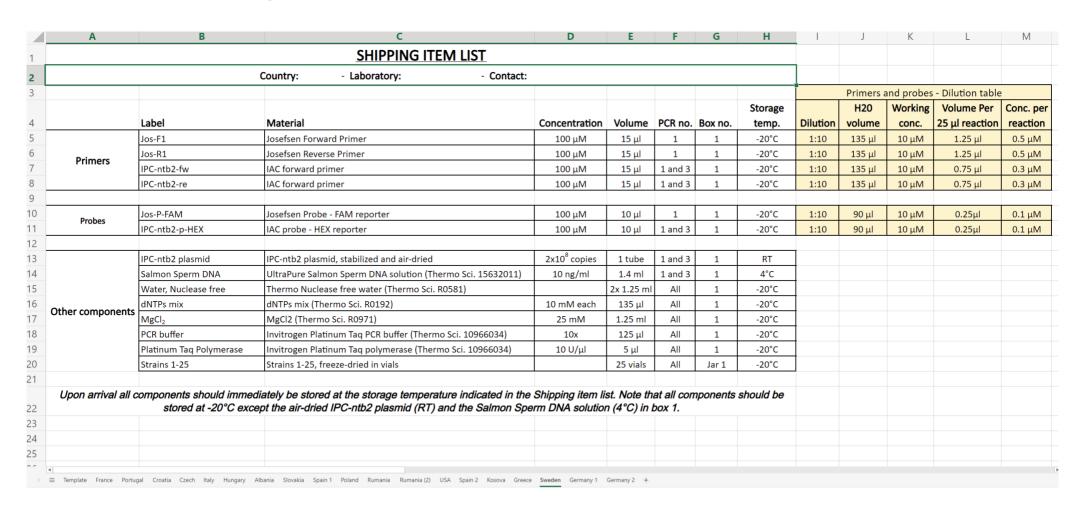
All selected strains were:

- freeze-dried to high concentration
- tested for growth at 41.5°C, on non-selective agar and mCCDA
- tested with the ref. and the PCR methods three weeks before and six weeks after send-off.
- stored at -70°C until send-off.

- Minimum 10 valid datasets per method from different participants needed (according to ISO 16140-6).
- Experts in WG3 Campylobacter and all NRL-Campylobacter were invited to participate in March (voluntary).
- Whenever possible, the study conditions should reflect the normal variation between laboratories, so the participants were allowed to use own reagents.
- The participants were allowed to participate in a subset of methods.
- We welcomed participants that run these PCRs routinely and also those that don't.
- Offered to send reagents for the PCR assays if required for participation.

PARTICIPANTS

- PCR 1 14 laboratories from 13 different countries registered for participation
- PCR 2 15 laboratories from 14 different countries registered for participation
- PCR 3 15 laboratories from 14 different countries registered for participation


PREPARATIONS OF THE ILS

 Collected information from participants on PCR instrument, IAC and preferences for fluorophores

qPCR instrument ~	Primers J	Probes *	IAC -ntb2 ~	camp probe *	ntb2 probe *	reagents *	comments	Primers *	reagen(*	comments	Primers -1	Probes	IAC	jejuni prob	coli probe	lari probe	probe	reagent *	comments
Biorad CFX 96	1	1	1	FAM	HEX	1		1	1		1	1	1	FAM	Cy5	ROX	HEX	1	
Biorad CFX 96	1	1	1	FAM	HEX	0		1	0		1	1	1	FAM	CY5	ROX	HEX	0	
	0	0	0			0		0	0		0	0	0					0	
	0	0	0			0		0	0		0	0	0					0	
	0	0	0			0		1	1		0	0	0					0	
ABI 7500	1	1	1	FAM	JOE	1		0	0		1	1	1	FAM	Cy5	TAMRA	JOE	1	
Biorad CFX 96	1	1	0	FAM		0	VIC for own IAC	1	0		1	1	0	FAM	Cy5	ROX		0	VIC for own IAC
Biorad CFX 96	1	1	0	FAM		0	Texas red For o	1	0		1	1	0	FAM	Cy5	TAMRA?		0	Texas red for own IAC
Agilent Stratagene MX3000	1	1	1	FAM	HEX	1		1	1	also need generul	1	1	1	FAM	Cy5	TAMRA	HEX	1	
ABI 7500	1	1	0	FAM		1	Cy3, Cy5 for IAC	1	1		1	1	0	FAM	HEX	TAMRA		1	Cy3, Cy5 for own IAC
ABI 7500	1	1	0	FAM		0	Cy5 for IAC	1	0	only lari primers	1	1	0	FAM	HEX	TAMRA		0	Cy5 for own IAC
	0	0	0			0		1	0	only lari primers. r	0	0	0					0	
iCycler iQ5 thermocycler (BioRad)	1	1	1	FAM	JOE	1		1	0		1	1	1	FAM	Cy5	TAMRA	JOE	1	
Biorad CFX 96	1	1	1		HEX	0	only primers an	0	0		1	1	1				HEX	0	only primers and probe for IA
ABI 7500	1	1	1	FAM	JOE	1		0	0		1	1	1	FAM	Cy5	TAMRA	JOE	1	
Quantstudio 5	1	1	1	FAM	JOE	1		0	0		1	1	1	FAM	Cy5	TAMRA	JOE	1	
Biorad CFX 96	0	0	0			0		0	0		1	1	1	FAM	Cy5	ROX	HEX	1	
Biorad CFX 96	1	1	1	FAM	HEX	1		0	0		0	0	0						
	13	13	9	12		8	0	10	4	0	13	13	9				0	8	

PREPARATIONS OF THE ILS

A shipping item list to each participant was created

PREPARATIONS OF THE ILS

- Ordered all reagents in April
- Invitrogen Taq polymerase tested for stability (RT 4 days) for PCR 1 and 2 = ok
- The EURL performed the whole test end of April = ok, except one C. upsaliensis strain neg for PCR 2.
- On May 17, the ILS test packages were sent from SVA, Sweden, with ice packs and T-log to 19 participants.
- The test included a detailed SOP, a result table, randomley numbered freeze-dried strains, and reagents for the PCR assays if required. Provided instructions on how to store vials and reagents.

METHODOLOGY

PCR system	Scope	Reference method
PCR 1: Josefsen et al. 2004 qPCR	Confirmation (<i>C. jejuni</i> , <i>C. coli</i> and <i>C. lari</i>)	Morphology, motility, aerobic growth at 25°C and oxidase activity (Table 1)
PCR 2: Wang et al. 2002 Confirmation and species id (<i>C. jejuni</i> , <i>C. coli</i> , <i>C. lari</i> and <i>C. upsaliensis</i>)		Table 1 plus catalase activity, hippurate hydrolysis and indoxyl acetate hydrolysis tests (Table 2)
PCR 3: Mayr et al. 2010 qPCR	Confirmation and species id (<i>C. jejuni</i> , <i>C. coli</i> , <i>C. lari</i>)	Table 1 plus catalase activity, hippurate hydrolysis and indoxyl acetate hydrolysis tests (Table 2)

Table 1 — Characteristics of Campylobacter

Morphology (9.5.3)	Small curved bacillia
Motility (9.5.3)	Characteristic corkscrew darting ^a
Aerobic growth at 25 °C (9.5.4)	-
Oxidase activity (9.5.5)	+

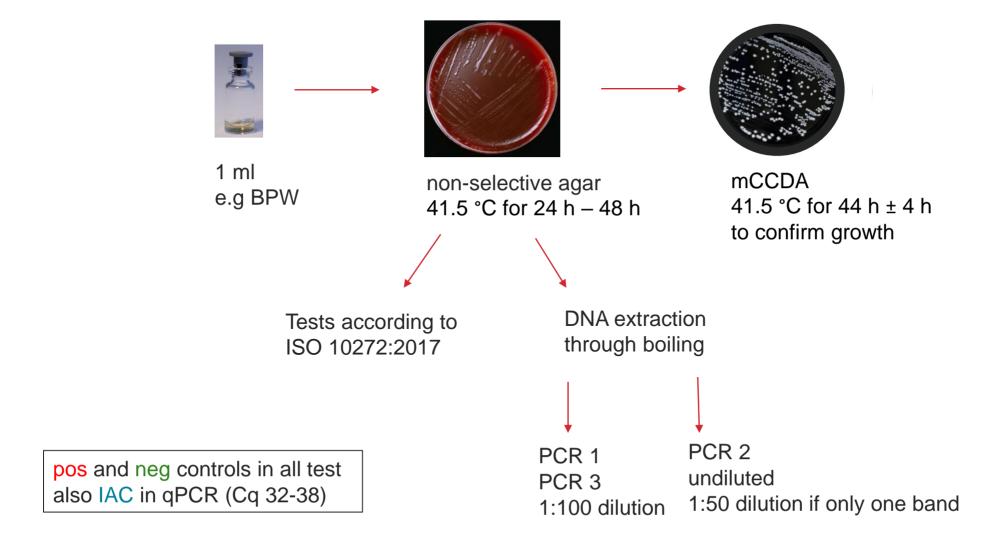

- Positive.
- Negative.
- Older cultures may rapidly lose their characteristic shape and motility and turn into less motile coccoid forms.

Table 2 — Characteristics of Campylobacter species

Characteristic	C. jejuni	C. coli	C. lari	C. upsaliensis
Catalase activity (9.6.2)	+	+	+	- or weak
Hippurate hydrolysis (9.6.3)	+a	-	-	-
Indoxyl acetate hydrolysis (9.6.4)	+	+	-	+

- + Positive.
- Negative.
- Some hippurate-negative C. jejuni strains have been reported.

TEST PROCEDURES

SUBMISSION OF RESULTS

- Participants submitted filled-in result table
- Control questions to make sure SOP and ISO 10272 was followed
- Control questions to make sure biochemical tests were valid
- Participants submitted raw data (gel pictures, data from qPCR evaluate curves)

EXCLUDED DATA

- Strains that grew poorly or not at all (mainly non-target Campylobacter spp.)
- Some strains did not grow in 41.5°C but in 37°C in some laboratories (considered neg)
- Incomplete or missing data for biochemical tests or PCR assays
- Deviations to the SOP
- Improper handling of the controls (e.g controls not run at the same time as the PCR test, or pos controls being neg and neg controls being pos)
- One of the two C. upsaliensis strains gave negative result in PCR 2 in the final test by EURL

ANALYSIS AND INTERPRETATION OF DATA

Indoxyl acetate test – weak and late color change (after 10 min) = pos

pPCR (PCR 1 and PCR 3) – with typical amplification curve and Cq <40 = pos

PCR 2 – both 23S band and species specific band = pos

SUMMARY OF THE RESULTS

IA: inclusivity agreement

ID: inclusivity deviation

EA: exclusivity agreement

ED: exclusivity deviation

PCR 1

	Number of strains	IA	ID	EA	ED
Inclusivity	200	199	<mark>1</mark>	Not applicable	Not applicable
Exclusivity	82	Not applicable	Not applicable	82	0

PCR 2

Target		Number of strains	IA	ID	EA	ED
C. jejuni	Inclusivity	147	145	<mark>2</mark>	Not applicable	Not applicable
C. jejuni	Exclusivity	295	Not applicable	Not applicable	295	0
C. coli	Inclusivity	149	149	0	Not applicable	Not applicable
C. coli	Exclusivity	293	Not applicable	Not applicable	293	0
C. lari	Inclusivity	64	64	0	Not applicable	Not applicable
C. lari	Exclusivity	330	Not applicable	Not applicable	330	0
C. upsaliensis	Inclusivity	9	9	0	Not applicable	Not applicable
C. upsaliensis	Exclusivity	433	Not applicable	Not applicable	433	0

PCR 3

Target		Number of strains	IA	ID	EA	ED
C. jejuni	Inclusivity	150	150	0	Not applicable	Not applicable
C. jejuni	Exclusivity	291	Not applicable	Not applicable	290	<mark>1</mark>
C. coli	Inclusivity	149	149	0	Not applicable	Not applicable
C. coli	Exclusivity	292	Not applicable	Not applicable	292	0
C. lari	Inclusivity	73	73	0	Not applicable	Not applicable
C. lari	Exclusivity	368	Not applicable	Not applicable	368	<mark>4</mark>

AL – Acceptability Limit = 2

(Maximum positive or negative acceptable difference)

On behalf of WG3 – thank you for your participation!

Acknowledgement: Experts in CEN/TC 463/WG3 *Campylobacter* and Ute Messelhäuser at Bavarian Health and Food Safety Authority in Germany

